

17CS54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Automata Theory and Computability

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define Language, Grammer and Automata with examples.
(04 Marks)
b. Define DFSM. Draw a DFSM to accept the Language.
i) $\mathrm{L}=\left\{\mathrm{awa}: \mathrm{w} \in(\mathrm{a}, \mathrm{b})^{*}\right\}$. Verify for the string aabaa.
ii) Set of an string having a substring abb over $\sum=\{a, b\}$. Verify for the string aabba.
(08 Marks)
c. Convert the following NDFSM to its equivalent DFSM (Refer Fig Q1(c))

Fig Q1(c)
(08 Marks)
OR
2 a. Constant an NDFSM for multiple keywords
$L=\left\{w \in(a, b)^{*}: \exists x, y \in\{a, b\}^{*}\right.$ where
$((\mathrm{w}=\mathrm{x}$ abbaay $) \vee(\mathrm{w}=\mathrm{xbabay}))\}$
(04 Marks)
b. Minimize the following Finite State Machine using partition method. (Refer Fig Q2(b))

Fig Q2(b)
(08 Marks)
c. Differentiate between DFSM, NDFSM and $\in-$ NDFSM with examples.
(08 Marks)

Module-2

3 a. Define Regular expression? Obtain the Regular expression for the following languages.
i) $\mathrm{L}=\left\{\mathrm{a}^{2 \mathrm{n}} \mathrm{b}^{2 \mathrm{n}+1} ; \mathrm{n} \geq 0, \mathrm{~m} \geq 0\right\}$
ii) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} ; \mathrm{n} \geq 4, \mathrm{~m} \leq 3\right\}$
iii) Set of string of 0 's and 1 's whose $10^{\text {th }}$ symbol from the right end side is 1 . Justify the answers.
(08 Marks)
b. State and prove pumping Lemma for regular languages.
(08 Marks)
c. Define Regular Grammer. Obtain Regular grammer for the language
$L=\left\{w \in(a, b)^{*} ; w\right.$ ends with the pattern aaaa $\}$.
(04 Marks)
OR
4 a. Prove that for every regular defined by regular expression is also defined by Finite State Machine.
(08 Marks)
b. Prove that the following Language is not regular
$\mathrm{L}=\left\{\mathrm{ww}^{\mathrm{R}} ; \mathrm{w} \in(0+1)^{*}\right.$ is not regular $\}$
(08 Marks)
c. Construct an NFSM which accepts the regular expression $(a+b)^{*}$ abb.
(04 Marks)

Module-3

5 a. Define Context Free Grammer. Obtain the Context Free Grammer for the following :
i) $L=\left\{w^{R}: w \in(a, b)^{*}\right\}$
ii) Write a CFG to generate balanced parenthesis

Where $\mathrm{Bal}=\left\{\mathrm{w} \in\{),(\}^{*} ;\right.$ parenthesis are balanced $\}$.
Justify the answers.
(08 Marks)
b. Define Leftmost and rightmost derivations with examples.
(04 Marks)
c. What is ambiguous grammer? Show that the following grammer is ambiguous for the string $\mathrm{id}+\mathrm{id} * \mathrm{id} . \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E}-\mathrm{E}| \mathrm{E} * \mathrm{E}|\mathrm{E} / \mathrm{E}| \mathrm{id}$
(08 Marks)

6 a. Define PDA, and Instantaneous description of PDA. Obtain a PDA to accept the language. $\mathrm{L}=\left\{\mathrm{wcw}^{\mathrm{R}}: \mathrm{w} \in(\mathrm{a}, \mathrm{b})^{*}\right\}$. Draw the transition diagram of PDA, show the moves by this PDA for the string abbcbba.
(10 Marks)
b. What is CNF and GNF? Convert the grammer in CNF
$\mathrm{S} \rightarrow \mathrm{ABa}$
$\mathrm{A} \rightarrow \mathrm{aab}$
$\mathrm{B} \rightarrow \mathrm{Ac}$
(05 Marks)
c. For the following CFG
$\mathrm{S} \rightarrow$ asbb/aab
Obtain the corresponding PDA.
(05 Marks)

Module-4

7 a. State the prove Pumping Lemma theorem for Context Free Languages.
(08 Marks)
b. Show that $L=\left\{a^{n} n^{n} c^{n} \mid n \geq 0\right\}$ is not context free.
c. Remove all unit production from the grammer
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{C} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{D}$
$\mathrm{D} \rightarrow \mathrm{E} \mid \mathrm{bc}$
$\mathrm{E} \rightarrow \mathrm{d} \mid \mathrm{Ab}$
(04 Marks)

OR

8 a. Explain with neat diagram, the working of a Turing Machine Model.
(06 Marks)
b. Design a Turing Machine to accept the language $L=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 1\right\}$. Draw the transition diagram. Show that moves made by this machine for the string 001122 .
(10 Marks)
c. Briefly explain the techniques for Turing Machine construction.

Module-5

9 a. Design a Turing Machine to accept the language $L=\left\{0^{n} 1^{n} \mid n \geq 1\right\}$. Draw the transition diagram show the moves made by this machine for the string 000111.
(10 Marks)
b. Explain the following :
i) Multitape Turing machine
ii) Post correspondence problem.

OR

10 Write short notes on:
a. Non Deterministic Turing Machine
b. Halting Problem of Turing Machine
c. Quantum Computation with example
d. Model of linear bounded automation.
(20 Marks)

