

(08 Marks)

(05 Marks)

(05 Marks)

(08 Marks)

<u>Module-3</u>

- a. Define Context Free Grammer. Obtain the Context Free Grammer for the following :
 i) L = {ww^R : w ∈ (a, b)*}
 - ii) Write a CFG to generate balanced parenthesis Where Bal = $\{w \in \{ \}, (\}^*; \text{ parenthesis are balanced}\}$.

Justify the answers.

- b. Define Leftmost and rightmost derivations with examples. (04 Marks)
- c. What is ambiguous grammer? Show that the following grammer is ambiguous for the string id + id * id. E → E + E | E E | E * E | E / E| id (08 Marks)

OR

- 6 a. Define PDA, and Instantaneous description of PDA. Obtain a PDA to accept the language. $L = \{wcw^{R} : w \in (a, b)^{*}\}$. Draw the transition diagram of PDA, show the moves by this PDA for the string abbcbba. (10 Marks)
 - b. What is CNF and GNF? Convert the grammer in CNF
 - $S \rightarrow ABa$

5

- $A \rightarrow aab$
- $B \rightarrow Ac$
- c. For the following CFG
 S → asbb/aab
 Obtain the corresponding PDA.

<u>Module-4</u>

- 7 a. State the prove Pumping Lemma theorem for Context Free Languages. (08 Marks)
 - b. Show that $L = \{a^n n^n c^n | n \ge 0\}$ is not context free.
 - c. Remove all unit production from the grammer
 - $S \rightarrow AB$
 - $A \rightarrow a$
 - $B \rightarrow C|b$
 - $C \rightarrow D$
 - $D \rightarrow E|bc$
 - $E \rightarrow d|Ab$

(04 Marks)

OR

- $\begin{array}{ll} \textbf{8} & a. & Explain with neat diagram, the working of a Turing Machine Model. \\ b. & Design a Turing Machine to accept the language L = \{0^n1^n2^n \mid n \geq 1\}. \\ \end{array}$
 - diagram. Show that moves made by this machine for the string 001122.(10 Marks)c. Briefly explain the techniques for Turing Machine construction.(04 Marks)

Module-5

9 a. Design a Turing Machine to accept the language L = {0ⁿ1ⁿ| n ≥ 1}. Draw the transition diagram show the moves made by this machine for the string 000111. (10 Marks)
b. Explain the following :

OR

- i) Multitona Turing mach
 - i) Multitape Turing machine
 - ii) Post correspondence problem.
- 10 Write short notes on :
 - a. Non Deterministic Turing Machine
 - b. Halting Problem of Turing Machine
 - c. Quantum Computation with example
 - d. Model of linear bounded automation.

(10 Marks)

(20 Marks)